印记基因在孤雌生殖方面的研究进展Research Progress of Imprinted Genes in Parthenogenesis
彭晟坤,张子敬,张格阳,张志浩,闵佳,李欣淼,王香南,施巧婷,祁兴山,黄永震,李惠侠,王二耀
摘要(Abstract):
孤雌生殖是一种独特的生殖方式,指的是卵母细胞在不经过受精的情况下,可以自发或通过物理、化学刺激发育为正常个体,而无需精子参与。在低等动物中,孤雌生殖可以仅由雌性个体完成,从而实现从单个雌性个体产生后代。然而在哺乳动物中,能够通过孤雌生殖发育为正常个体的实例极为罕见。该文介绍了孤雌激活的方式,孤雌胚胎获取方式和印记基因在孤雌生殖中的应用,以期为未来孤雌生殖的相关应用提供思路。
关键词(KeyWords): 孤雌生殖;印记基因;孤雌激活;孤雌胚胎
基金项目(Foundation): 河南省肉牛产业技术体系项目(HARS-22-13-S);; 国家肉牛牦牛产业技术体系编号(CARS-37);; 河南省科技攻关(222102110069,222102110018);; 河南省农科院“院科技创新团队:牛羊繁育与生产”(211022002);; 河南省重大科技专项:地方畜禽精准快育种体系构建与新品种选育(221100110200);; 河南省农业科学院科技创新团队项目牛羊繁育与生产(2023TD25);; 2022年度河南省中央引导地方科技发展资金项目(Z20221343039)
作者(Author): 彭晟坤,张子敬,张格阳,张志浩,闵佳,李欣淼,王香南,施巧婷,祁兴山,黄永震,李惠侠,王二耀
参考文献(References):
- [1] Kono T. Genomic imprinting is a barrier to parthenogenesis in mammals[J]. Cytogenetic and genome research, 2006, 113(1-4):31-35.
- [2]张果平,黄永宏,李峰.哺乳动物卵母细胞孤雌激活及孤雌胚发育研究进展[J].内蒙古畜牧科学, 2003,(1):32-34.
- [3]贾佩,肖红卫,刘西梅,等.猪体外成熟卵母细胞孤雌激活的研究[J].湖北农业科学, 2014, 53(23):5802-5805.
- [4]王延伟,王延华,李建远.孤雌生殖和孤雌胚胎干细胞研究进展[J].国际生殖健康/计划生育杂志, 2008(5):286-289.
- [5]闫益波,丁威.猪卵母细胞孤雌激活技术概述[J].猪业科学,2009, 26(4):78-81.
- [6]田见晖,蔡元,刘国世,等.化学激活对猪体外成熟卵母细胞孤雌发育的影响[J].中国农业科学, 2005,(5):1029-1033.
- [7] Kragh P, Du Y, Corydon T, et al. Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation[J]. Theriogenology, 2005, 64(7):1536-1545.
- [8] Leeb M, Walker R, Mansfield B, et al. Germline potential of parthenogenetic haploid mouse embryonic stem cells[J]. Development, 2012, 139(18):3301-3305.
- [9] Elling U, Taubenschmid J, Wirnsberger G, et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells[J]. Cell stem cell, 2011, 9(6):563-574.
- [10] Zhong C, Zhang M, Yin Q, et al. Generation of human haploid embryonic stem cells from parthenogenetic embryos obtained by microsurgical removal of male pronucleus[J]. Cell research, 2016,26(6):743-746.
- [11]张曼玲,赵丽华,周鑫,等.不同激活方法对猪孤雌胚胎单倍体率的影响[J].中国农业科学, 2011, 44(1):218-224.
- [12] Liu C, Li W. Advances in haploid embryonic stem cell research[J]. Biology of Reproduction, 2022, 107(1):250-260.
- [13] Qiu X, Li N, Xiao X, et al. Aggregation of a parthenogenetic diploid embryo and a male embryo improves the blastocyst development and parthenogenetic embryonic stem cell derivation[J].Turkish Journal of Biology, 2017, 41(4):629-639.
- [14] Loi P, Ledda S, Fulka J R J, et al. Development of parthenogenetic and cloned ovine embryos:effect of activation protocols[J]. Biology of reproduction, 1998, 58(5):1177-1187.
- [15] Barlow D P, Bartolomei M S. Genomic imprinting in mammals[J].Cold Spring Harbor perspectives in biology, 2014, 6(2):a018382.
- [16] Piedrahita J A. The role of imprinted genes in fetal growth abnormalities[J]. Birth Defects Research Part A:Clinical and Molecular Teratology, 2011, 91(8):682-692.
- [17] Franklin G, Adam G, Ohlsson R. Genomic imprinting and mammalian development[J]. Placenta, 1996, 17(1):3-14.
- [18]程婷婷,徐刚毅.基因印记的功能及应用[J].生命的化学,2007(5):402-404.
- [19] Thomas E, David M, Perez D N G, et al. Imprinting disorders[J].Nature Reviews Disease Primers, 2023, 9(1).
- [20] Ruddock N T, Wilson K J, Cooney M A, et al. Analysis of imprinted messenger RNA expression during bovine preimplantation development[J]. Biology of reproduction, 2004, 70(4):1131-1135.
- [21] Feil R, Khosla S, Cappai P, et al. Genomic imprinting in ruminants:allele-specific gene expression in parthenogenetic sheep[J]. Mammalian Genome, 1998, 9:831-834.
- [22] Thurston A, Taylor J, Gardner J, et al. Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage[J]. Reproduction, 2008, 135:29-40.
- [23] Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood[J]. Nature, 2004, 428(6985):860-864.
- [24] Wang D, Chen X, Song Y, et al. Disruption of imprinted gene expression and DNA methylation status in porcine parthenogenetic fetuses and placentas[J]. Gene, 2014, 547(2):351-358.
- [25] Li Z K, Wang L Y, Wang L B, et al. Generation of bimaternal and bipaternal mice from hypomethylated haploid ESCs with imprinting region deletions[J]. Cell Stem Cell, 2018, 23(5):665-676.
- [26] Wei Y, Yang C R, Zhao Z A. Viable offspring derived from single unfertilized mammalian oocytes[J]. Proceedings of the National Academy of Sciences, 2022, 119(12):e2115248119.